Affiliation:
1. Department of Physics and Nano Medicine Research Center, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel
Abstract
In this study we investigated, spectroscopically, the binding of hematoporphyrin (HP) to non-charged lipid vesicles as a function of temperature and the molecular structure of the phospholipid. The temperature dependence of partitioning was employed to evaluate the thermodynamic parameters of the process. We studied the binding of HP to liposomes composed of different phospholipids: natural lecithin and three chemically defined phosphatidylcholines: dimiristoyl-phosphatidylcholine (DMPC), 1-palmitoyl-2-myristoyl-phosphatidylcholine (PMPC) and 1-stearoyl-2-myristoyl-phosphatidylcholine (SMPC), at different temperatures. The last three lipids differ only in the length of the fatty acid on 1 position of the glycerol backbone. Consequently, they have different phase transition temperatures and different order parameters. For SMPC, PMPC and DMPC, we checked the effect of temperatures above and below the phase transition while for lecithin, whose phase transition temperature is well below 0 °C, only temperatures above the phase transition could be tested. A very distinct effect of the phase transition on the binding constant was observed. Below this temperature a dramatic decrease in the binding was observed as the temperature was increased. Above the phase transition, the effect of temperature declined and the changes were minor compared to the changes observed when the bilayers undergo the solid-gel phase transition. Differences in HP binding to the various bilayers were attributed to the differences in the order parameters of DMPC, PMPC, SMPC and lecithin bilayers.
Publisher
World Scientific Pub Co Pte Lt
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献