Initializing the EM Algorithm for Univariate Gaussian, Multi-Component, Heteroscedastic Mixture Models by Dynamic Programming Partitions

Author:

Polanski Andrzej1,Marczyk Michal2,Pietrowska Monika3,Widlak Piotr3,Polanska Joanna2ORCID

Affiliation:

1. Institute of Informatics, Silesian University of Technology, 44-100 Gliwice, Poland

2. Data Mining Group, Institute of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland

3. Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Branch in Gliwice, 44-101 Gliwice, Poland

Abstract

Setting initial values of parameters of mixture distributions estimated by using the EM recursive algorithm is very important to the overall quality of estimation. None of the existing methods are suitable for heteroscedastic mixtures with a large number of components. We present relevant novel methodology of estimating the initial values of parameters of univariate, heteroscedastic Gaussian mixtures, on the basis of dynamic programming partitioning of the range of observations into bins. We evaluate variants of the dynamic programming method corresponding to different scoring functions for partitioning. We demonstrate the superior efficiency of the proposed method compared to existing techniques for both simulated and real datasets.

Funder

Narodowe Centrum Nauki

Narodowe Centrum Nauki (PL)

Narodowe Centrum Badań i Rozwoju (PL)

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3