Non-Probabilistic Uncertainty and Correlation Propagation Analysis Methods Based on Multidimensional Parallelepiped Model

Author:

Lü Hui12,Li Zhencong12,Huang Xiaoting2,Shangguan Wen-Bin1

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, P. R. China

2. School of Automobile and Traffic Engineering, Guangzhou City University of Technology, Guangzhou 510800, P. R. China

Abstract

In engineering practice, the uncertainty and correlation may coexist in the input parameters, as well as in the output responses. To address such cases, several methods are developed for the non-probabilistic uncertainty and correlation propagation analysis in this study. In the proposed methods, the multidimensional parallelepiped model (MPM) is introduced to quantify the uncertainty and correlation of input parameters. In the uncertainty propagation analysis, three methods are presented to calculate the interval bounds of output responses. Among the methods, the Monte Carlo uncertainty analysis method (MCUAM) is firstly presented as a reference method, and then the first-order perturbation method (FOPM) is employed to promote the computational efficiency, and the sub-parallelepiped perturbation method (SPPM) is further developed to handle the correlated parameters with large uncertainty. In the correlation propagation analysis, the Monte Carlo correlation analysis method (MCCAM) is proposed based on the MPM and Monte Carlo simulation, which aims to compute the correlation among different output responses. The uncertainty domains between any two responses can also be constructed by the MCCAM. The effectiveness of the proposed methods on dealing with the uncertainty and correlation propagation problems is demonstrated by three numerical examples.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Youth Research Fund of Guangzhou City University of Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3