A Transformation for Imposing the Rigid Bodies on the Solution of the Vorticity-Stream Function Formulation of Incompressible Navier–Stokes Equations

Author:

Badri Mohammadali1,Sabetghadam Fereidoun1ORCID

Affiliation:

1. Aerospace Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

A new penalization method is proposed for implementing the rigid bodies on the solution of the vorticity-stream function formulation of the incompressible Navier–Stokes equations. The method is based upon an active transformation of dependent variables. The transformation may be interpreted as time dilation. In this interpretation, the rigid body is considered as a region where the time is dilated infinitely, that is, time is stopped. The transformation is introduced in the vorticity and stream function equations to achieve a set of modified equations. The, in the modified equations, the time dilation of the solid region is approached to infinity. The mathematical and physical properties of the modified equations are investigated and implementation of the no-slip and no-penetration conditions are justified. Moreover, a suitable numerical method is presented for the solution of the modified equations. In the proposed numerical method, time integration is performed via the Crank–Nicolson method, and the semi-discrete equations are spatially discretized via second-order finite differencing on a uniform Cartesian grid. The method is applied to the fluid flow around a square obstacle placed in a channel, a sudden flow perpendicular to a thin flat plate, and the flow around a circular cylinder. The accuracy of the numerical solutions is evaluated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3