The Least Squares Time Element Method Based on Wavelet Approximation for Structural Dynamic Load Identification

Author:

Lu Cheng1,Zhu Liangcong12,Liu Jie1ORCID,Meng Xianghua1,Li Kun13

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China

2. Shanghai Institute of Aerospace System Engineering, Shanghai 201100, P. R. China

3. School of Mechatronic Engineering, Changsha University, Changsha 410083, P. R. China

Abstract

Dynamic load identification is a commonly used and quite important approach to obtain the excitation loads of structures in engineering practice. In this paper, a novel dynamic load identification method combining the least squares time element method (LSTEM), wavelet scaling function and regularization method is proposed, which performs a better accuracy and a stronger anti-noise ability. It decomposes the time history of dynamic load into a series of time elements, and approximates the load profile at each time element using wavelet scaling functions. In order to balance the accuracy and efficiency for load identification, an optimal wavelet resolution is then determined. Simultaneously, the least squares time element model is derived which establishes the forward model for computing the wavelet coefficient. Finally, the wavelet coefficients for dynamic load identification are accurately and stably solved by implementing regularization. By this method, on the one hand, the wavelet scaling function and LSTEM improve the identification accuracy, and on the other hand, the integral process in the least squares operation gains the anti-noise ability for the load identification. A numerical example of a roof structure and an experiment of a composite laminate are studied and verify the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Changsha Outstanding Innovative Youth Training Program

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3