A NUMERICAL SIMULATION OF CONVECTIVE FLOW IN THE SOLIDIFICATION PROCESS

Author:

KORTI ABDEL ILLAH NABIL1

Affiliation:

1. Université de Tlemcen, Faculté de Technologie, Département de Mécanique, Laboratoire EOLE, B. P. 230, Tlemcen 13000, Algérie

Abstract

There has been a growing research interest in the melting and solidification technology among mathematicians and engineers. The topic has obvious practical importance in a wide range of applications. Natural convection may play a significant role in heat transfer and hence affect the progress of the solidification. A fixed-grid finite volume numerical approach is developed and used to simulate physical details of convection flow in the solidification problems. This approach is based on the enthalpy–porosity method that is traditionally used to track the motion of the liquid–solid front and to obtain the temperature distribution and the velocity profiles in the liquid phase. The enthalpy–porosity model treats the mushy region as a porous medium. In this paper, the numerical and experimental studies of unsteady natural convection during solidification of cylindrical ingots are presented. The aim of the study consists of the numerical determination of the fluid flow, the temperature evolution, and the solidification front versus time. To validate the numerical model, an experimental study of the simple casting of cylindrical ingots was undertaken within the laboratory of metallurgy. The measured temperature was compared with values calculated numerically. A good agreement was obtained.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for improvement of die-casting die: combination use of CAE and biomimetic laser process;The International Journal of Advanced Manufacturing Technology;2013-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3