Noniterative Integration Algorithms with Controllable Numerical Dissipations for Structural Dynamics

Author:

Li Jinze1,Yu Kaiping1ORCID

Affiliation:

1. Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, P. R. China

Abstract

A new family of noniterative algorithms with controllable numerical dissipations for structural dynamics is studied. Particularly, this paper provides nine members of the proposed algorithms and two existing methods are included as two special cases. The proposed algorithms achieve unconditional stability and are second-order accurate for linear elastic systems. The explicit expressions of stability conditions for nonlinear stiffness systems are completely presented, which shows that new algorithms possess unconditional and conditional stability for stiffness softening and hardening systems, respectively. A comprehensive stability and accuracy analysis, including numerical energy dissipations and dispersions, are studied in order to gain insight into spectral properties of new algorithms. Due to the existence of the nonzero spurious root, this paper also pays attention to the influence of the spurious root, which shows that the spurious root does not influence numerical accuracy at low-frequency domains. Although the proposed algorithms exhibit the unusual overshoot behaviors in either displacement or velocity, numerical damping ratios in new algorithms can significantly eliminate this overshoot at a few steps. The new dissipative algorithms are appropriate to solve numerical transient responses of the structure. Numerical examples are also presented to demonstrate the analytical results.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3