A Fractal Model of Elastic–Plastic Contact Between Rough Surfaces for a Low-Velocity Impact Process

Author:

Lan Weibin1,Fan Shouwen1,Fan Shuai2

Affiliation:

1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People’s Republic of China

2. The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China

Abstract

Under the low-velocity impact conditions, in order to study the contact load variation law of the ellipsoid elastic bodies, an elastic–plastic contact analysis model of rough ellipsoid surfaces is provided based on elastic–plastic fractal theory. A spherical elastic–plastic fractal model considering friction factors is established, and the spherical diameter density distribution function and elastic contact mechanics are used as the solution methods. The two contact surfaces are taken as the research object, and the influence of relevant variables on the contact intensity is analyzed. The analysis results show that the fractal dimension and roughness have a greater effect on contact performance, the contact load is positively related to the surface roughness, and the lower friction coefficient has a weaker effect on the contact load, and the correctness of the present model is verified by comparing finite element simulation results and other studies. The modified spherical contact load function provides a theoretical basis for the friction and wear of the microscopic surface, it can be applied for solving the sliding contact problems with different impact velocities and the surface bearing capacity of the impact parts can be improved.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3