Digital-Image-Driven Stochastic Homogenization for Recycled Aggregate Concrete Based on Material Microstructure

Author:

Wu Yuching1ORCID,Xiao Jianzhuang1

Affiliation:

1. Structural Engineering Department, College of Civil Engineering, Tongji University, No. 1239 Rd. Si-Ping, Shanghai 200092, P. R. China

Abstract

In this paper, a digital-image-driven stochastic homogenization method is developed to analyze elastic heterogeneous media such as recycled aggregate concrete (RAC), etc. This linking can be accomplished in an efficient manner by exploiting the excellent synergy of finite pixel-element method and Monte Carlo simulation for the computation of the effective properties of the random five-phase composite. The pixel-point discretization of system geometry is used for the approximation of the mechanical response of the elastic heterogeneous microstructure. Using nanoindentation technique and scanning electron microscopy, tens of digital images of modulus map of the five-phase heterogeneous material are made. Using the moving window technique and the Monte Carlo method, the random elastic moduli of the five phases at micro-scale are obtained. Then the effective elastic modulus of the meso-scale representative volume element (RVE) is computed based on spectral stochastic finite element method. Finally, the effective modulus is used to analyze the global behavior of RVE at macro-scale. Then the finite pixel-element method is used to investigate the effect of microscopic covariance noise on the global material properties, as well as the computational efficiency. The results show that the digital image method is an accurate and efficient tool to investigate the random material properties across scales.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3