MULTISCALE NUMERICAL METHODS FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS

Author:

PARK PETER J.1,HOU THOMAS Y.1

Affiliation:

1. Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

We present an efficient and robust approach in the finite element framework for numerical solutions that exhibit multiscale behavior, with applications to singularly perturbed convection-diffusion problems. The first type of equation we study is the convection-dominated convection-diffusion equation, with periodic or random coefficients; the second type of equation is an elliptic equation with singularities due to discontinuous coefficients and non-smooth boundaries. In both cases, standard methods for purely hyperbolic or elliptic problems perform poorly due to sharp boundary and internal layers in the solution. We propose a framework in which the finite element basis functions are designed to capture the local small-scale behavior correctly. When the structure of the layers can be determined locally, we apply the multiscale finite element method, in which we solve the corresponding homogeneous equation on each element to capture the small scale features of the differential operator. We demonstrate the effectiveness of this method by computing the enhanced diffusivity scaling for a passive scalar in the cellular flow. We also carry out the asymptotic error analysis for its convergence rate and perform numerical experiments for verification. For a random flow with nonlocal layer structure, we use a variational principle to gain additional information in our attempt to design asymptotic basis functions. We also apply the same framework for elliptic equations with discontinuous coefficients or non-smooth boundaries. In that case, we construct local basis function near singularities using infinite element method in order to resolve extreme singularity. Numerical results on problems with various singularities confirm the efficiency and accuracy of this approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3