Nanoflake assembled hierarchical porous flower-like α-Fe2O3 with large specific surface area for enhanced acetone sensing

Author:

Zhang Jianxia1,Liu Li1,Tang Xiaonian1,Sun Dan1,Tian Chunxia1,Yang Yang1

Affiliation:

1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China

Abstract

High porosity [Formula: see text]-Fe2O3 has attracted a lot of attention due to its exceptional structure. In this paper, nanoflake assembled hierarchical porous flower-like [Formula: see text]-Fe2O3 was prepared by hydrothermal and calcination methods without any additional templates. Scanning electron microscopy (SEM) morphological characterization results show that with the increase of calcination temperature (400C, 450C, 500C, 550C, 600C), pores appeared. However, the results of nitrogen adsorption show that the specific surface area of the [Formula: see text]-Fe2O3 reaches the maximum value (52.19[Formula: see text]m2/g) when the calcination temperature is 500C. The gas sensing performance of flower-like [Formula: see text]-Fe2O3 with different calcination temperature is compared, interestingly, with the increase of calcination temperature, the response of the samples increased first and then decreased, and reached the maximum value (44.2–100 parts per million (ppm) acetone) when the calcination temperature was 500C. The minimum concentration for acetone was 200 ppb (response value is 2.0). Moreover, calcined at 500C, hierarchical porous [Formula: see text]-Fe2O3 has a fast response recovery (4/25 s) and low working temperature (210C). These excellent gas sensing properties are mainly due to porous structure, large specific surface area, and oxygen vacancies on the surface, which make it a promising material for acetone sensors.

Funder

the Jilin Provincial Science and Technology Department

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3