Affiliation:
1. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
Abstract
Efficient electron selective contacts, smoother rear silicon surface and passivation of silicon-electrode interfaces could reduce parasitic light absorption and electron-hole recombination. Therefore, they are necessary for high conversion efficiency in silicon solar cells. In this work, a novel transition metal doped glass frit is fabricated and introduced into pristine Al paste. As a result, the average power conversion efficiency (PCE) of cells is improved from 17.9 to 18.3%. Combining several results, the improvement can be attributed to three key factors: (a) a thicker back surface field (BSF) layer that blocks electrons; (b) a smoother rear silicon surface which leads to less parasitic absorption; and (c) glass frit coating on aluminum particles which may facilite hole-transfer from silicon layer to aluminum electrode.
Funder
Soft Science Research Project of Guangdong Province
Guangdong Innovative Team Program
Shenzhen Science and Technology Research Grant
Publisher
World Scientific Pub Co Pte Lt
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献