Effect of pyrolysis parameters on mechanical properties of polymer-derived ceramics

Author:

Ma Chi1,Zhao Huan1,Li Yan1ORCID

Affiliation:

1. Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA

Abstract

Polymer-derived ceramics (PDCs) which are fabricated through pyrolysis of preceramic polymers have attracted increasing attention due to their versatility in structure architecture design and property tailoring. Shaping at the polymer state using 3D printing allows the final ceramic products to exhibit arbitrary shapes and complex architectures that are otherwise impossible to achieve through traditional processing routes. The polymer-to-ceramic phase transition also provides additional space for mechanical property tailoring. A multiscale computational model is developed to explore the phase transition mechanisms and their correlations with processing parameters and failure response. Calculations in this work concern PMHS/DVB preceramic polymers. Molecular dynamics (MD) simulations are carried out first to track the atomic structure evolution at different temperatures. Continuum-scale ceramic phase formation is calculated on the basis of the competition between gas generation and gas diffusion. The effect of processing parameters on mechanical properties of pyrolyzed PMHS/DVB is systematically studied. Conclusions from this study can provide direct guidance for fabricating PDC composites with tailored mechanical properties.

Funder

National Science Foundation

Thayer School of Engineering, Dartmouth College

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3