Stability effect of an axial magnetic field on fluid flow bifurcation between coaxial cylinders

Author:

Benhacine Hamza12,Mahfoud Brahim3ORCID,Salmi Mohamed24

Affiliation:

1. Department of Mechanical, Faculty of Technologies, University of Mohamed Boudiaf, M’sila 28000, Algeria

2. Laboratory of Physics and Chemistry of Materials, University of M’sila, Algeria

3. Department of Mechanical, University of UAMO-Bouira, 10000, Algeria

4. Department of Physics, University of M’sila, B.P. 1713, M’sila 28000, Algeria

Abstract

Numerical simulations aim to investigate the bifurcation caused by swirling flow between two coaxial vertical cylinders, and the fluid layers produced by the thermal gradient. The stability of both bifurcation and fluid layers by an axial magnetic field is analyzed. The finite-volume method is used to solve the governing Navier–Stokes, temperature and potential equations. A conducting viscous fluid characterized by a small Prandtl number [Formula: see text] is placed in the gap between two coaxial cylinders. The combination of aspect ratio, [Formula: see text] and Reynolds number, [Formula: see text] for three annular gaps ([Formula: see text] and [Formula: see text]) is compared in terms of flow stability, and heat transfer rates. Without a magnetic field, the vortex breakdown takes place near the inner cylinder due to the increased pumping action of the Ekman boundary layer. Fluid layered structures are developed by the competition between buoyancy and viscous forces. The increase in the magnitude of the magnetic field retarders the onset of the oscillatory instability caused by the disappearance of the vortex breakdown and reduces the number of fluid layers. The limits in which a vortex breakdown bubble manifests and the limits of transition from the multiple fluid layers to the single fluid layer are established.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation,Numerical Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3