Cross-connection structure of concordant semigroups

Author:

Azeef Muhammed P. A.12,Romeo P. G.3,Nambooripad K. S. S.4

Affiliation:

1. Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia

2. Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia

3. Department of Mathematics, Cochin University of Science And Technology, Cochin-682022, India

4. Department of Mathematics, University of Kerala, Thiruvananthapuram-695581, India

Abstract

Cross-connection theory provides the construction of a semigroup from its ideal structure using small categories. A concordant semigroup is an idempotent-connected abundant semigroup whose idempotents generate a regular subsemigroup. We characterize the categories arising from the generalized Green relations in the concordant semigroup as consistent categories and describe their interrelationship using cross-connections. Conversely, given a pair of cross-connected consistent categories, we build a concordant semigroup. We use this correspondence to prove a category equivalence between the category of concordant semigroups and the category of cross-connected consistent categories. In the process, we illustrate how our construction is a generalization of the cross-connection analysis of regular semigroups. We also identify the inductive cancellative category associated with a pair of cross-connected consistent categories.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross connection compatible discrete normal categories;Asian-European Journal of Mathematics;2023-08-28

2. Compatible and Discrete Normal Categories;Springer Proceedings in Mathematics & Statistics;2023

3. Categories and semigroups;Asian-European Journal of Mathematics;2022-09-06

4. A tale of two categories: Inductive groupoids and cross-connections;Journal of Pure and Applied Algebra;2022-07

5. The Mathematical Work of K. S. S. Nambooripad;Semigroups, Categories, and Partial Algebras;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3