Affiliation:
1. School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, England
Abstract
Recent work by T. Delzant and S. Hair shows that certain groups are unique product groups. In effect, they show that the groups have a locally invariant order, an idea introduced by D. Promislow in the early eighties. Having a locally invariant order implies the group is a unique product group, and a strict left (or right) ordering on a group is a locally invariant order. We study properties of the class of LIO groups, that is, groups having a locally invariant order. The main result gives conditions under which the fundamental group of a graph of LIO groups is LIO. In particular, the free product of two LIO groups is LIO. There is an analogous result for a graph of right orderable groups. We also study tree-free groups (those having a free action without inversions on a Λ-tree, for some ordered abelian group Λ). In particular, a detailed proof that tree-free groups are LIO is given. There is also a detailed proof of an observation made by Hair, that the fundamental group of a compact hyperbolic manifold is virtually LIO.
Publisher
World Scientific Pub Co Pte Lt
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献