Metrics induced by certain Hilbert-Schmidt fidelities on positive semi-definite matrices

Author:

Toan Ho Minh1ORCID,Khoi Vu The1

Affiliation:

1. Institute of Mathematics (VAST), 18 Hoang Quoc Viet, 10307, Hanoi, Vietnam

Abstract

Motivated by measuring the degree of similarity of a pair of quantum states (density matrices), we consider the metric property of the modified Bures angles and modified Bures distances of symmetric functions which are extensions of some fidelity measures on the spaces [Formula: see text] of nonzero positive semi-definite matrices. We use the positive semi-definiteness of the Gram-type matrices to characterize the metric property of the modified Bures angles. As a consequence, we can show that the modified Bures angles induced by the geometric mean, harmonic mean, minimum and maximum of two positive numbers are metrics on [Formula: see text]. In addition, we can also show that the metric property of the modified Bures angles is stronger than that of the modified Bures distances.

Funder

International Center for Research and Postgraduate Training in Mathematics

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3