Affiliation:
1. Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany
Abstract
In a fundamental lemma we characterize “generating functions” of certain functors on the category of algebraic non-commutative probability spaces. Special families of such generating functions correspond to “unital, associative universal products” on this category, which again define a notion of non-commutative stochastic independence. Using the fundamental lemma, we prove the existence of cumulants and of “cumulant Lie algebras” for all independences coming from a unital, associative universal product. These include the five independences (tensor, free, Boolean, monotone, anti-monotone) appearing in Muraki’s classification, c-free independence of Bożejko and Speicher, the indented product of Hasebe and the bi-free independence of Voiculescu. We show how the non-commutative independence can be reconstructed from its cumulants and cumulant Lie algebras.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献