Non-commutative stochastic independence and cumulants

Author:

Manzel Sarah1,Schürmann Michael1

Affiliation:

1. Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany

Abstract

In a fundamental lemma we characterize “generating functions” of certain functors on the category of algebraic non-commutative probability spaces. Special families of such generating functions correspond to “unital, associative universal products” on this category, which again define a notion of non-commutative stochastic independence. Using the fundamental lemma, we prove the existence of cumulants and of “cumulant Lie algebras” for all independences coming from a unital, associative universal product. These include the five independences (tensor, free, Boolean, monotone, anti-monotone) appearing in Muraki’s classification, c-free independence of Bożejko and Speicher, the indented product of Hasebe and the bi-free independence of Voiculescu. We show how the non-commutative independence can be reconstructed from its cumulants and cumulant Lie algebras.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3