Affiliation:
1. Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway
2. University of Biskra, Algeria
Abstract
The classical maximum principle for optimal stochastic control states that if a control [Formula: see text] is optimal, then the corresponding Hamiltonian has a maximum at [Formula: see text]. The first proofs for this result assumed that the control did not enter the diffusion coefficient. Moreover, it was assumed that there were no jumps in the system. Subsequently, it was discovered by Shige Peng (still assuming no jumps) that one could also allow the diffusion coefficient to depend on the control, provided that the corresponding adjoint backward stochastic differential equation (BSDE) for the first-order derivative was extended to include an extra BSDE for the second-order derivatives. In this paper, we present an alternative approach based on Hida–Malliavin calculus and white noise theory. This enables us to handle the general case with jumps, allowing both the diffusion coefficient and the jump coefficient to depend on the control, and we do not need the extra BSDE with second-order derivatives. The result is illustrated by an example of a constrained linear-quadratic optimal control.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献