THE JONES AND ALEXANDER POLYNOMIALS FOR SINGULAR LINKS

Author:

FIEDLER THOMAS1

Affiliation:

1. Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 09, France

Abstract

We extend the Kauffman state models of the Jones and Alexander polynomials of classical links to state models of their two-variable extensions in the case of singular links. Moreover, we extend both of them to polynomials with d + 1 variables for long singular knots with exactly d double points. These extensions can detect non-invertibility of long singular knots.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Reference9 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extensions of Braid Group Representations to the Monoid of Singular Braids;Mediterranean Journal of Mathematics;2024-09

2. Quandles, Knots, Quandle Rings and Graphs;Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures;2023

3. On the axioms of singquandles;Journal of Knot Theory and Its Ramifications;2022-11

4. Singquandles, psyquandles, and singular knots: A survey;Journal of Knot Theory and Its Ramifications;2021-10

5. Cocycle Invariants and Oriented Singular Knots;Mediterranean Journal of Mathematics;2021-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3