ON THE ARITHMETIC 2-BRIDGE KNOTS AND LINK ORBIFOLDS AND A NEW KNOT INVARIANT

Author:

HILDEN HUGH M.1,LOZANO MARIA TERESA2,MONTESINOS-AMILIBIA JOSE MARIA3

Affiliation:

1. Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA

2. Departamento de Matematicas, Universidad de Zaragoza, Zaragoza 50009, Spain

3. Departamento de Geometria y Topologia, Universidad Complutense, Madrid 28040, Spain

Abstract

Let (p/q, n) denote the orbifold with singular set the two bridge knot or link p/q and isotropy group cyclic of orden n. An algebraic curve [Formula: see text] (set of zeroes of a polynomial r(x, z)) is associated to p/q parametrizing the representations of [Formula: see text] in PSL [Formula: see text]. The coordinates x, z, are trace(A2)=x, trace(AB)=z where A and B[Formula: see text] are the images of canonical generators a, b of [Formula: see text]. Let (xn, zn) be the point of [Formula: see text] corresponding to the hyperbolic orbifold (p/q, n). We prove the following result: The (orbifold) fundamental group of (p/q, n) is arithmetic if and only if the field Q(xn, zn) has exactly one complex place and ϕ(xn)<ϕ(zn)<2 for every real embedding [Formula: see text]. Consider the angle α for which the cone-manifold (p/q, α) is euclidean. We prove that 2cosα is an algebraic number. Its minimal polynomial (called the h-polynomial) is then a knot invariant. We indicate how to generalize this h-polynomial invariant for any hyperbolic knot. Finally, we compute h-polynomials and arithmeticity of (p/q, n) with p≦40, and (p/q, n) with p≦99q2≡1 mod p. We finish the paper with some open problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Borromean arithmetic orbifolds;Topology and its Applications;2023-11

2. Integral geometric orbifolds;Journal of Knot Theory and Its Ramifications;2021-10

3. VOLUMES OF TWO-BRIDGE CONE MANIFOLDS IN SPACES OF CONSTANT CURVATURE;Transformation Groups;2020-11-24

4. A Calculation of the Hyperbolic Torsion Polynomial of a Pretzel Knot;Tokyo Journal of Mathematics;2019-06-01

5. Cyclic branched coverings of some pretzel links;Periodica Mathematica Hungarica;2013-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3