Affiliation:
1. Department of Mathematics, Yale University, New Haven, CT 06520, USA
Abstract
We discuss the consequences of the possibility that Vassiliev invariants do not detect knot invertibility as well as the fact that quantum Lie group invariants are known not to do so. On the other hand, finite group invariants, such as the set of homomorphisms from the knot group to M11, can detect knot invertibility. For many natural classes of knot invariants, including Vassiliev invariants and quantum Lie group invariants, we can conclude that the invariants either distinguish all oriented knots, or there exist prime, unoriented knots which they do not distinguish.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献