Trading on online social mood: A machine learning strategy based on Twitter sentiment

Author:

He Chengying1,Lin Mason2,Wang Ning3

Affiliation:

1. Sino-UK Blockchain Industry Research Institute, Guangxi University, Nanning, P. R. China

2. Davidson College Davidson, NC 28035, USA

3. Oxford Nie Financial Big Data Laboratory, Mathematical Institute, University of Oxford, Oxford, UK

Abstract

This paper examines the potential of using online social sentiment data in algorithmic trading strategies. Several machine learning models are tested to produce a trading signal from the sentiment data to forecast the trend of a stock’s price. The algorithms are trained on the features extracted from PsychSignal data (containing bullish and bearish sentiment from Twitter). One most popular model, Random Forest (RF) classifier, is selected to generate a signal for the trading strategy. After backtesting on 1386 stocks listed in both NYSE and NASDAQ, the results show that the proposed model outperforms the baseline model, a simple moving average (SMA) strategy. We use the GridSearchCV to fine-tune the parameters of the classifier and compare the performance with the SMA baseline and the SPY benchmark, showing that our model generates 114.5% return on investment from January 2013 through October 2015. Additionally, the portfolios constructed by the RF classifier appear to produce a higher return than portfolios constructed by an SMA strategy. The results show that Twitter sentiment data is a valuable technical trading indicator for specific sectors.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3