Software Product Line Engineering for Robotic Perception Systems

Author:

Brugali Davide1,Hochgeschwender Nico2

Affiliation:

1. Department of Computer Engineering, University of Bergamo, 24044 Dalmine, Italy

2. Interdisciplinary Centre for Security, Reliability and Trust, Université du Luxembourg, L-1855, Luxembourg

Abstract

Control systems for autonomous robots are concurrent, distributed, embedded, real-time and data intensive software systems. A real-world robot control system is composed of tens of software components. For each component providing robotic functionality, tens of different implementations may be available. The difficult challenge in robotic system engineering consists in selecting a coherent set of components, which provide the functionality required by the application requirements, taking into account their mutual dependencies. This challenge is exacerbated by the fact that robotics system integrators and application developers are usually not specifically trained in software engineering. In various application domains, software product line (SPL) development has proven to be the most effective approach to face this kind of challenges. In a previous paper [D. Brugali and N. Hochgeschwender, Managing the functional variability of robotic perception systems, in First IEEE Int. Conf. Robotic Computing, 2017, pp. 277–283.] we have presented a model-based approach to the development of SPL for robotic perception systems, which integrates two modeling technologies developed by the authors: The HyperFlex toolkit [L. Gherardi and D. Brugali, Modeling and reusing robotic software architectures: The HyperFlex toolchain, in IEEE Int. Conf. Robotics and Automation, 2014, pp. 6414–6420.] and the Robot Perception Specification Language (RPSL) [N. Hochgeschwender, S. Schneider, H. Voos and G. K. Kraetzschmar, Declarative specification of robot perception architectures, in 4th Int. Conf. Simulation, Modeling, and Programming for Autonomous Robots, 2014, pp. 291–302.]. This paper extends our previous work by illustrating the entire development process of an SPL for robot perception systems with a real case study.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling variability in self-adapting robotic systems;Robotics and Autonomous Systems;2023-09

2. Software variability in service robotics;Empirical Software Engineering;2022-12-24

3. A Model-Based Approach for Common Representation and Description of Robotics Software Architectures;Applied Sciences;2022-03-15

4. A Software Products Line as Educational Tool to Learn Industrial Robots Programming with Arduino;Electronics;2022-03-02

5. Challenges of Implementing Software Variability in Eclipse OMR: An Interview Study;2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP);2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3