Machine Learning Prediction of Locomotion Intention from Walking and Gaze Data

Author:

Bremer Gianni1,Stein Niklas1,Lappe Markus1

Affiliation:

1. Institute of Psychology and Department of Psychology, University of Muenster, Muenster, Germany

Abstract

In many applications of human–computer interaction, a prediction of the human’s next intended action is highly valuable. To control direction and orientation of the body when walking towards a goal, a walking person relies on visual input obtained by eye and head movements. The analysis of these parameters might allow us to infer the intended goal of the walker. However, such a prediction of human locomotion intentions is a challenging task, since interactions between these parameters are nonlinear and highly dynamic. We employed machine learning models to investigate if walk and gaze data can be used for locomotor prediction. We collected training data for the models in a virtual reality experiment in which 18 participants walked freely through a virtual environment while performing various tasks (walking in a curve, avoiding obstacles and searching for a target). The recorded position, orientation- and eye-tracking data was used to train an LSTM model to predict the future position of the walker on two different time scales, short-term predictions of 50[Formula: see text]ms and long-term predictions of 2.5[Formula: see text]s. The trained LSTM model predicted free walking paths with a mean error of 5.14[Formula: see text]mm for the short-term prediction and 65.73[Formula: see text]cm for the long-term prediction. We then investigated how much the different features (direction and orientation of the head and body and direction of gaze) contributed to the prediction quality. For short-term predictions, position was the most important feature while orientation and gaze did not provide a substantial benefit. In long-term predictions, gaze and orientation of the head and body provided significant contributions. Gaze offered the greatest predictive utility in situations in which participants were walking short distances or in which participants changed their walking speed.

Funder

German Research Foundation

European Union’s Horizon 2020

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the Effects of Eye-Tracking Interpolation Methods on Model Performance of LSTM;Proceedings of the 2024 Symposium on Eye Tracking Research and Applications;2024-06-04

2. Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive Systems;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3