SixTrack V and runtime environment

Author:

De Maria R.1,Andersson J.2,Berglyd Olsen V. K.2,Field L.2,Giovannozzi M.2,Hermes P. D.2,Høimyr N.2,Kostoglou S.2,Iadarola G.2,Mcintosh E.2,Mereghetti A.2,Molson J.2,Pellegrini D.2,Persson T.2,Schwinzerl M.2,Maclean E. H.23,Sjobak K. N.24,Zacharov I.5,Singh S.6

Affiliation:

1. Beam Department (BE-ABP-HSS), CERN, 1211, Geneva 23, Switzerland

2. CERN, 1211, Geneva 23, Switzerland

3. University of Malta, Msida, MSD 2080, Malta

4. University of Oslo, Boks 1072 Blindern, 0316, Oslo, Norway

5. EPFL, Rte de la Sorge, 1015, Lausanne, Switzerland

6. Indian Institute of Technology Madras, IIT P.O., Chennai 600 036, India

Abstract

SixTrack is a single-particle tracking code for high-energy circular accelerators routinely used at CERN for the Large Hadron Collider (LHC), its luminosity upgrade (HL-LHC), the Future Circular Collider (FCC) and the Super Proton Synchrotron (SPS) simulations. The code is based on a 6D symplectic tracking engine, which is optimized for long-term tracking simulations and delivers fully reproducible results on several platforms. It also includes multiple scattering engines for beam–matter interaction studies, as well as facilities to run the integrated simulations with external particle matter interaction codes. These features differentiate SixTrack from general-purpose, optics-design software. The code recently underwent a major restructuring to merge the advanced features into a single branch, such as multiple ion species, interface with external codes and high-performance input/output. This restructuring also removed a large number of compilation flags, instead enabling/disabling the functionality with runtime options. In the process, the code was moved from Fortran 77 to Fortran 2018 standard, also allowing and achieving a better modularization. Physics models (beam–beam effects, Radio-Frequency (RF) multipoles, current carrying wires, solenoid and electron lenses) and methods (symplecticity check) have also been reviewed and refined to offer more accurate results. The SixDesk runtime environment allows the user to manage the large batches of simulations required for accurate predictions of the dynamic aperture. SixDesk supports several cluster environments available at CERN as well as submitting jobs to the LHC@Home volunteering computing project, which enables volunteers contributing with their hardware to CERN simulation. SixTrackLib is a new library aimed at providing a portable and flexible tracking engine for single- and multi-particle problems using the models and formalism of SixTrack. The library is able to run in CPUs as well as graphical processing units (GPUs). This contribution presents the status of the code, summarizes the main existing features and provides details about the main development lines SixTrack, SixDesk and SixTrackLib.

Funder

Department of Energy

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3