GERDA results and the future perspectives for the neutrinoless double beta decay search using 76Ge
-
Published:2018-03-30
Issue:09
Volume:33
Page:1843004
-
ISSN:0217-751X
-
Container-title:International Journal of Modern Physics A
-
language:en
-
Short-container-title:Int. J. Mod. Phys. A
Author:
, Agostini M.1, Bakalyarov A. M.2, Balata M.1, Barabanov I.3, Baudis L.4, Bauer C.5, Bellotti E.67, Belogurov S.38, Bettini A.910, Bezrukov L.3, Biernat J.11, Bode T.12, Borowicz D.13, Brudanin V.13, Brugnera R.910, Caldwell A.14, Cattadori C.7, Chernogorov A.8, Comellato T.12, D’Andrea V.1, Demidova E. V.8, Di Marco N.1, Domula A.15, Doroshkevich E.3, Egorov V.13, Gangapshev A.53, Garfagnini A.910, Giordano M.16, Grabmayr P.17, Gurentsov V.3, Gusev K.13212, Hakenmüller J.5, Heisel M.5, Hemmer S.10, Hiller R.4, Hofmann W.5, Hult M.18, Inzhechik L. V.3, Janicskó Csáthy J.12, Jochum J.4, Junker M.1, Kazalov V.3, Kermaidic Y.5, Kihm T.5, Kirpichnikov I. V.8, Kirsch A.5, Klimenko A.53, Kneißl R.14, Knöpfle K. T.5, Kochetov O.13, Kornoukhov V. N.38, Kuzminov V. V.3, Laubenstein M.1, Lazzaro A.12, Lindner M.5, Lippi I.10, Lubashevskiy A.3, Lubsandorzhiev B.3, Lutter G.18, Macolino C.1, Majorovits B.14, Maneschg W.5, Miloradovic M.4, Mingazheva R.4, Misiaszek M.11, Moseev P.3, Nemchenok I.13, Panas K.11, Pandola L.19, Pelczar K.1, Pertoldi L.910, Pullia A.20, Ransom C.4, Riboldi S.20, Rumyantseva N.132, Sada C.910, Salamida F.16, Schneider B.15, Schönert S.12, Schreiner J.5, Schütz A.-K.17, Schulz O.14, Schwingenheuer B.5, Selivanenko O.3, Shevchik E.13, Shirchenko M.13, Simgen H.5, Smolnikov A.53, Stanco L.10, Vanhoefer L.14, Vasenko A. A.8, Veresnikova A.3, von Sturm K.910, Wagner V.5, Wegmann A.5, Wester T.15, Wiesinger C.12, Wojcik M.11, Yanovich E.3, Zhitnikov I.13, Zhukov S. V.2, Zinatulina D.13, Zschocke A.17, Zsigmond A. J.14, Zuber K.15, Zuzel G.11
Affiliation:
1. INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy 2. National Research Centre “Kurchatov Institute”, Moscow, Russia 3. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia 4. Physik Institut der Universität Zürich, Zurich, Switzerland 5. Max-Planck-Institut für Kernphysik, Heidelberg, Germany 6. Dipartimento di Fisica, Università Milano Bicocca, Milan, Italy 7. INFN Milano Bicocca, Milan, Italy 8. Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia 9. Dipartimento di Fisica e Astronomia dell’Università di Padova, Padua, Italy 10. INFN Padova, Padua, Italy 11. Institute of Physics, Jagiellonian University, Cracow, Poland 12. Physik Department and Excellence Cluster Universe, Technische Universität München, Germany 13. Joint Institute for Nuclear Research, Dubna, Russia 14. Max-Planck-Institut für Physik, Munich, Germany 15. Institut für Kern – und Teilchenphysik, Technische Universität Dresden, Dresden, Germany 16. INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila, L’Aquila, Italy 17. Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany 18. European Commission, JRC-Geel, Geel, Belgium 19. INFN Laboratori Nazionali del Sud, Catania, Italy 20. Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milan, Italy
Abstract
The GERmanium Detector Array (GERDA) is a low background experiment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN designed to search for the rare neutrinoless double beta decay ([Formula: see text]) of [Formula: see text]Ge. In the first phase (Phase I) of the experiment, high purity germanium diodes were operated in a “bare” mode and immersed in liquid argon. The overall background level of [Formula: see text] was a factor of ten better than those of its predecessors. No signal was found and a lower limit was set on the half-life for the [Formula: see text] decay of [Formula: see text]Ge [Formula: see text] yr (90% CL), while the corresponding median sensitivity was [Formula: see text] yr (90% CL). A second phase (Phase II) started at the end of 2015 after a major upgrade. Thanks to the increased detector mass and performance of the enriched germanium diodes and due to the introduction of liquid argon instrumentation techniques, it was possible to reduce the background down to [Formula: see text]. After analyzing 23.2 kg[Formula: see text]⋅[Formula: see text]yr of these new data no signal was seen. Combining these with the data from Phase I a stronger half-life limit of the [Formula: see text]Ge [Formula: see text] decay was obtained: [Formula: see text] yr (90% CL), reaching a sensitivity of [Formula: see text] yr (90% CL). Phase II will continue for the collection of an exposure of 100 kg[Formula: see text]yr. If no signal is found by then the GERDA sensitivity will have reached [Formula: see text] yr for setting a 90% CL. limit. After the end of GERDA Phase II, the flagship experiment for the search of [Formula: see text] decay of [Formula: see text]Ge will be LEGEND. LEGEND experiment is foreseen to deploy up to 1-ton of [Formula: see text]Ge. After ten years of data taking, it will reach a sensitivity beyond 10[Formula: see text] yr, and hence fully cover the inverted hierarchy region.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|