Model Predictive Control for Stable Walking Using the Divergent Component of Motion with Footstep Location and Yaw Adaptation

Author:

Griffin Robert J.1ORCID,Leonessa Alexander2

Affiliation:

1. Florida Institute for Human and Machine Cognition (IHMC), 40 S Alcaniz Street, Pensacola, Forida 32504, USA

2. Terrestrial Robotics, Engineering & Controls (TREC) Lab, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, Virginia 24060, USA

Abstract

This paper presents an extension of previous model predictive control (MPC) schemes for dynamic walking to the stabilization of the time-varying divergent component-of-motion (DCM). In order to address the control authority limitations caused by fixed footholds, the step positions and rotations are treated as control inputs, allowing the generation and execution of stable walking motions, both at high speeds and in the face of disturbances. The use of the time-varying DCM allows consideration of height changes on the DCM dynamics, improving the robustness of the controller over varying terrain. Footstep rotation is included to allow for better modeling of the adjustment effects on reachability for stability and navigation of complex environments. This is done by formulating a quadratically constrained mixed-integer quadratic program (MIQCQP), which, when combined with the use of the time-varying DCM to account for the effects of height changes and use of angular momentum, improves the capabilities of MPC strategies for bipedal walking. While the MIQCQP cannot be solved at the desired control frequency, a method for compensating for the DCM dynamics between solves is presented. Simulation results of fast walking over flat ground and navigating varying-height terrain is presented with the ESCHER humanoid. This is combined with experiments that recover from a variety pushes, which demonstrate the effectiveness of this approach.

Funder

National Science Board

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3