A NOVEL ADAPTIVE NEURO-FUZZY UNSCENTED KALMAN FILTER FOR SLAM

Author:

HAVANGI RAMAZAN1,TESHNEHLAB MOHAMMAD2,NEKOUI MOHAMMAD ALI2

Affiliation:

1. ISLAB, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1431714191, Iran

2. Control Department, K.N. Toosi University of Technology, Tehran, 1431714191, Iran

Abstract

Extended Kalman filter (EKF) has been used as a popular choice to solve simultaneous localization and mapping (SLAM) problem. However, SLAM algorithm based on EKF-SLAM has two serious drawbacks, namely the linear approximation of nonlinear functions and the calculation of Jacobin matrices. For solving these problems, SLAM algorithm based on unscented Kalman filter (UKF-SLAM) has been recently proposed. However, the performance of the UKF-SLAM and thus the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices respectively denoted by Qk and Rk. Imprecise knowledge of these statistics can cause significant degradation in performance. This article proposes the development of an adaptive neuro-fuzzy UKF (ANFUKF) for SLAM. The Adaptive neuro-fuzzy attempts to estimate the elements of Rk matrix in the UKF-SLAM algorithm at each sampling instant when measurement updating step is carried out. The adaptive neuro-fuzzy inference system (ANFIS) supervises the performance of the UKF-SLAM with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (GD) to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much as possible. The simulation results show the effectiveness of the proposed algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3