Ideal structure of crossed products by endomorphisms via reversible extensions of C*-dynamical systems

Author:

Kwaśniewski Bartosz Kosma123

Affiliation:

1. Department of Mathematics and Computer Science, The University of Southern Denmark, Campusvej 55, DK–5230 Odense M, Denmark

2. Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, PL-00-956 Warszawa, Poland

3. Institute of Mathematics, University of Bialystok, ul. Akademicka 2, PL-15-267 Bialystok, Poland

Abstract

We consider an extendible endomorphism α of a C*-algebra A. We associate to it a canonical C*-dynamical system (B, β) that extends (A, α) and is "reversible" in the sense that the endomorphism β admits a unique regular transfer operator β. The theory for (B, β) is analogous to the theory of classic crossed products by automorphisms, and the key idea is to describe the counterparts of classic notions for (B, β) in terms of the initial system (A, α). We apply this idea to study the ideal structure of a non-unital version of the crossed product C*(A, α, J) introduced recently by the author and A. V. Lebedev. This crossed product depends on the choice of an ideal J in (ker α), and if J = ( ker α) it is a modification of Stacey's crossed product that works well with non-injective α's. We provide descriptions of the lattices of ideals in C*(A, α, J) consisting of gauge-invariant ideals and ideals generated by their intersection with A. We investigate conditions under which these lattices coincide with the set of all ideals in C*(A, α, J). In particular, we obtain simplicity criteria that besides minimality of the action require either outerness of powers of α or pointwise quasinilpotence of α.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological freeness for C⁎-correspondences;Journal of Mathematical Analysis and Applications;2019-05

2. Pure infiniteness and ideal structure of C⁎-algebras associated to Fell bundles;Journal of Mathematical Analysis and Applications;2017-01

3. Crossed products by endomorphisms of C0(X)-algebras;Journal of Functional Analysis;2016-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3