PRINCIPAL BUNDLES ON RATIONALLY CONNECTED FIBRATIONS OVER ABELIAN VARIETIES

Author:

BISWAS INDRANIL1

Affiliation:

1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Abstract

Let f : M → A be a smooth surjective algebraic morphism, where M is a connected complex projective manifold and A a complex abelian variety, such that all the fibers of f are rationally connected. We show that an algebraic principal G-bundle EG over M admits a flat holomorphic connection if EG admits a holomorphic connection; here G is any connected reductive linear algebraic group defined over ℂ. We also show that EG admits a holomorphic connection if and only if any of the following three statements holds. (1) The principal G-bundle EG is semistable, c2( ad (EG)) = 0, and all the line bundles associated to EG for the characters of G have vanishing rational first Chern class. (2) There is an algebraic principal G-bundle E'G on A such that f*E'G = EG, and all the translations of E'G by elements of A are isomorphic to E'G itself. (3) There is a finite étale Galois cover [Formula: see text] and a reduction of structure group [Formula: see text] to a Borel subgroup B ⊂ G such that all the line bundles associated to ÊB for the characters of B have vanishing rational first Chern class. In particular, the above three statements are equivalent.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3