Affiliation:
1. Institut de mathématiques, Université Pierre et Marie Curie Tour 46-56 B. 507, Case 247, 4 Place Jussieu 75252 Paris Cedex 05, France
Abstract
Let [Formula: see text] be a polynomially convex compact set and let M be a (2p-1) dimensional (p ≥ 2) maximally complex bounded scarred C1 submanifold of [Formula: see text], irreducible in the current sense. According to Harvey–Lawson [14] and Chirka [4], there exists a bounded irreducible analytic set [Formula: see text] such that [M]=±d[T]. In this paper, we prove that every CR-meromorphic map carrying M into a projective manifold V extends to a meromorphic map F:T → V. We extend the notion of CR-meromorphic maps to CR submanifolds of [Formula: see text] and give another proof of our extension theorem which extends to the greater codimensional case. We also apply our extension result to prove a Lewy type extension theorem for CR-meromorphic maps, a Hartogs type theorem in [Formula: see text] and the non embedding of the Andreotti–Rossi CR structure in [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献