Temperature and entropy in molecular system

Author:

Wang Leyu1,Lee James D.2

Affiliation:

1. Center for Collision Safety and Analysis, George Mason University, Fairfax, VA 22030, USA

2. Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA

Abstract

The irreversibility, temperature, and entropy are identified for an atomic system of solid material. Thermodynamics second law is automatically satisfied in the time evolution of molecular dynamics (MD). The irreversibility caused by an atom spontaneously moves from a non-stable equilibrium position to a stable equilibrium position. The process is dynamic in nature associated with the conversion of potential energy to kinetic energy and the dissipation of kinetic energy to the entire system. The forward process is less sensitive to small variation of boundary condition than reverse process, causing the time symmetry to break. Different methods to define temperature in molecular system are revisited with paradox examples. It is seen that the temperature can only be rigorously defined on an atom knowing its time history of velocity vector. The velocity vector of an atom is the summation of the mechanical part and the thermal part, the mechanical velocity is related to the global motion (translation, rotation, acceleration, vibration, etc.), the thermal velocity is related to temperature and is assumed to follow the identical random Gaussian distribution for all of its [Formula: see text], [Formula: see text] and [Formula: see text] component. The [Formula: see text]-velocity (same for [Formula: see text] or [Formula: see text]) versus time obtained from MD simulation is treated as a signal (mechanical motion) corrupted with random Gaussian distribution noise (thermal motion). The noise is separated from signal with wavelet filter and used as the randomness measurement. The temperature is thus defined as the variance of the thermal velocity multiply the atom mass and divided by Boltzmann constant. The new definition is equivalent to the Nose–Hover thermostat for a stationary system. For system with macroscopic acceleration, rotation, vibration, etc., the new definition can predict the same temperature as the stationary system, while Nose–Hover thermostat predicts a much higher temperature. It is seen that the new definition of temperature is not influenced by the global motion, i.e., translation, rotation, acceleration, vibration, etc., of the system. The Gibbs entropy is calculated for each atom by knowing normal distribution as the probability density function. The relationship between entropy and temperature is established for solid material.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3