Lemon-Juice-Based Microwave Synthesis and Optical Characterization of Anisotropic Gold Nanoparticles

Author:

Baez-Cruz Ricardo1,Sekar Ramkumar2,Manidurai Paulraj1ORCID

Affiliation:

1. Department of Physics, Faculty of Physical and Mathematical Sciences, University of Concepcion, PO-Box 160-C, Concepcion, Chile

2. Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605014, India

Abstract

Anisotropic gold nanoparticles (AuNPs) were synthesized using microwave (MW)-assisted route. Lemon extract was used as both reducing and stabilizing agent. Subsequent UV treatment was carried out to modify the particle size and shape. Distribution of triangular and pentagonal-shaped particles were found to increase in number. Moreover, up to 60% increase in particle size was also observed. Change in optical property and appearance of plasmon modes were clear indication of the modification caused. Local density of photonic states (LDOS) and electric field distribution were obtained through computational simulation using MATLAB toolbox. Experimental results were used as the input values for the simulation. Dipolar distribution was observed along the boundaries of the spherical NPs, while for triangular and pentagonal-shaped NPs, they were found to be concentrated along their edges and corners. The results presented here encourage us to choose an alternative eco-friendly, quick and simple route to synthesize gold NPs of various shapes for various application such as in viral detection, nanobiomaterials, biomedical images, detection-therapy, etc.

Funder

Agencia Nacional de Investigación y Desarrollo

University Grants Commission - South Eastern Regional Office

Department of Science & Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3