Enhancing Thermal Conductivity of Phase Change Materials Using Nanomaterials and its Effectiveness in Cooling Solar Cells

Author:

Albisher Huda1,Abu Safa Mustafa2ORCID

Affiliation:

1. Department of Electrical Engineering-Renewable Energy, Palestine Polytechnic University, Hebron, Palestine

2. Department of Applied Physics and Mathematics, Palestine Polytechnic University, Hebron, Palestine

Abstract

The latent heat storage system is considered the most promising technology in thermal energy storage (TES) because of its many advantages. This technique uses phase change material (PCM) as a TES medium. However, the low thermal conductivity (TC) of PCM is the major drawback of the system. Previous studies have shown that the addition of nanomaterials to PCM generally increases its TC. On the other hand, researchers tend to study the possibility of using enhanced PCM to cool solar cells. In fact, raising the solar cell’s operating temperature negatively impacts its efficiency. This problem is considered one of the biggest problems in solar energy systems, and researchers are still working to solve it. This paper focused on the possibility of enhancing the TC of paraffin by adding different shapes of silver nanomaterials to it (silver nanoparticles, silver nanowires and nanohybrid with silver nanoparticles and silver nanowires). Nanomaterials were added at volume fractions of 0.5% and 1%. Then, the study examined the ability to use this improved material to reduce the temperature of solar cells. We used the “Solidworks” program to create a 3D system, and then we used the “Ansys Fluent” software to simulate five cases; PV without PCM, PV with PCM, PV with PCM enhanced by nanoparticles, PV with PCM enhanced by nanowires, PV with PCM enhanced by nanohybrid (a mixture of nanoparticles and nanowires). The results show that using PCM enhanced by nanowire at a volume fraction of 0.5% gave the best results in decreasing the temperature of PV. The average temperature of PV declined by 14.9[Formula: see text]. In addition, the efficiency of PV rose by about 7.6%. Followed by using PCM enhanced by nanoparticles at a volume fraction of 1%. The average temperature of PV declined by 12.9[Formula: see text]. Moreover, the efficiency of PV rose by about 6.6%.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3