FABRICATION OPTIMIZATION OF NANOHYDROXYAPATITE ARTIFICIAL BONE SCAFFOLDS

Author:

SHUAI CIJUN12,GAO CHENGDE1,NIE YI1,LI PENGJIAN1,ZHUANG JINGYU1,HU HUANLONG1,PENG SHUPING34

Affiliation:

1. State Key Laboratory of High Performance Complex Manufacturing, P. R. China

2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China

3. Cancer Research Institute, Central South University, Changsha, 410078, P. R. China

4. Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06510, USA

Abstract

Serious microcracks often occur on the surface of nanohydroxyapatite (n-HAP) artificial bone scaffolds prepared by selective laser sintering (SLS) technology. In this study, we found that appropriate preheating before sintering can reduce and attenuate the cracks. The microstructure and morphology of sintered n-HAP were tested at different preheating temperature and laser sintering speed with scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The experiments showed that the cracks gradually reduced and then disappeared when the preheating temperature increased from 0°C to 600°C while other parameters remain unchanged. The n-HAP particles gradually fused and grew up, while the grain size of sintered n-HAP will be attenuated with the increase of preheating temperature. As the thermal conductivity of n-HAP increases with increased preheating temperature, the temperature drops quickly, inhibiting greatly the grain growth of n-HAP. We obtained a group of optimum parameters when the sintered n-HAP still maintains nanostructure and possesses the optimal comprehensive performances, that is, laser power is 26 W, spot diameter is 4 mm, sintering speed is 200 mm/min, layer thickness is 0.4 mm, layer density is 852 kg/m3, and optimized preheating temperature is 600°C. These data illustrated that the cracks of sintered n-HAP can be eliminated at appropriate preheating temperature and sintering speed. This provided experimental optimal condition for the preparation of artificial bone scaffolds with nanohydroxyapatite ceramics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3