Affiliation:
1. Department of Chemistry, Himachal Pradesh University, Shimla 5, India
Abstract
CdO/CdS nanocomposites have been synthesized via the solution combustion route. These nanocomposites have been characterized in terms of XRD, FESEM, EDS, UV-visible and FTIR spectroscopy. The crystallinity and the crystallite size of the as-synthesized CdO/CdS nanocomposites were calculated from XRD, whereas the surface morphology and chemical purity were obtained from FESEM and EDS analysis. Further, all the samples were used as photocatalyst for the degradation of methyl orange (MO) dye under UV-Visible irradiation. The rate constant, [Formula: see text], was obtained by the Langmuir–Hinshelwood model. From [Formula: see text] values, it can be observed that the rate constant increases on increasing the amount of photocatalyst due to an increase in surface area. The rate constant value for CdO/CdS nanocomposite annealed at 615[Formula: see text]C was found to be very low, which may be largely due to loss in crystallinity at this higher temperature. Further, we compared our results with those reported in the literature and it was observed that CdO/CdS nanocomposites act as a better photocatalyst than others.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,General Materials Science