Preparation and Performance Study of ZnO Nanorod Array with Anti-Ultraviolet and Superhydrophobic Surface

Author:

Chen Menglong1,Hua Jianglong1,Jiang Qi1

Affiliation:

1. Chemistry and Chemical Engineering School, South China University of Technology, Guangzhou 510641, People’s Republic of China

Abstract

A two-step low-temperature hydrothermal method was used to construct an aluminum-nickel compound network structure on the substrate surface, followed by a secondary hydrothermal synthesis of ZnO nanorod array. After low surface energy material modification, a superhydrophobic and superoleophobic surface was obtained. The aluminum-nickel compound network structure plays a key guiding role in the growth of ZnO nanorod arrays. The uniformly shaped and densely arranged ZnO nanorod arrays have high roughness and exhibit excellent hydrophobic properties after modification. The surface of the ZnO nanorod array is improved in terms of UV resistance due to the size effect. The effects of hydrothermal reaction temperature, hydrothermal reaction time, hydrothermal reaction pH value, and Zn[Formula: see text] concentration on the surface structure, morphology, and properties of the ZnO nanorod array were also studied.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3