A Generic Approach on How to Formally Specify and Model Check Path Finding Algorithms: Dijkstra, A* and LPA*

Author:

Ogata Kazuhiro1

Affiliation:

1. School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Abstract

The paper describes how to formally specify three path finding algorithms in Maude, a rewriting logic-based programming/specification language, and how to model check if they enjoy desired properties with the Maude LTL model checker. The three algorithms are Dijkstra Shortest Path Finding Algorithm (DA), A* Algorithm and LPA* Algorithm. One desired property is that the algorithms always find the shortest path. To this end, we use a path finding algorithm (BFS) based on breadth-first search. BFS finds all paths from a start node to a goal node and the set of all shortest paths is extracted. We check if the path found by each algorithm is included in the set of all shortest paths for the property. A* is an extension of DA in that for each node [Formula: see text] an estimation [Formula: see text] of the distance to the goal node from [Formula: see text] is used and LPA* is an incremental version of A*. It is known that if [Formula: see text] is admissible, A* always finds the shortest path. We have found a possible relaxed sufficient condition. The relaxed condition is that there exists the shortest path such that for each node [Formula: see text] except for the start node on the path [Formula: see text] plus the cost to [Formula: see text] from the start node is less than the cost of any non-shortest path to the goal from the start. We informally justify the relaxed condition. For LPA*, if the relaxed condition holds in each updated version of a graph concerned including the initial graph, the shortest path is constructed. Based on the three case studies for DA, A* and LPA*, we summarize the formal specification and model checking techniques used as a generic approach to formal specification and model checking of path finding algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3