A Dual Relaxation Method for Neural Network Verification

Author:

Xiong Huanzhang12ORCID,Hou Gang12ORCID,Qin Yueyuan12ORCID,Wang Jie12ORCID,Kong Weiqiang12ORCID

Affiliation:

1. School of Software Technology, Dalian University of Technology, Dalian 116621, P. R. China

2. Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116621, P. R. China

Abstract

In the robustness verification of neural networks, formal methods have been used to give deterministic guarantees for neural networks. However, recent studies have found that the verification method of single-neuron relaxation in this field has an inherent convex barrier that affects its verification capability. To address this problem, we propose a new verification method by combining dual-neuron relaxation and linear programming. This method captures the dependencies between different neurons in the same hidden layer by adding a two-neuron joint constraint to the linear programming model, thus overcoming the convex barrier problem caused by relaxation for only a single neuron. Our method avoids the combination of exponential inequality constraints and can be computed in polynomial time. Experimental results show that we can obtain tighter bounds and achieve more accurate verification than single-neuron relaxation methods.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3