Applicability of Machine Learning Methods on Mobile App Effort Estimation: Validation and Performance Evaluation

Author:

Pandey Mamta1,Litoriya Ratnesh1,Pandey Prateek1

Affiliation:

1. Jaypee University of Engineering and Technology, Guna (M.P.), India

Abstract

Software cost estimation is one of the most crucial tasks in a software development life cycle. Some well-proven methods and techniques have been developed for effort estimation in case of classical software. Mobile applications (apps) are different from conventional software by their nature, size and operational environment; therefore, the established estimation models for traditional desktop or web applications may not be suitable for mobile app development. The objective of this paper is to propose a framework for mobile app project estimation. The research methodology adopted in this work is based on selecting different features of mobile apps from the SAMOA dataset. These features are later used as input vectors to the selected machine learning (ML) techniques. The results of this research experiment are measured in mean absolute residual (MAR). The experimental outcomes are then followed by the proposition of a framework to recommend an ML algorithm as the best match for superior effort estimation of a project in question. This framework uses the Mamdani-type fuzzy inference method to address the ambiguities in the decision-making process. The outcome of this work will particularly help mobile app estimators, development professionals, and industry at large to determine the required efforts in the projects accurately.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing student dropout factors in engineering courses using a fuzzy based decision support system;Multimedia Tools and Applications;2024-07-18

2. An improved technique for stock price prediction on real-time exploiting stream processing and deep learning;Multimedia Tools and Applications;2023-12-18

3. Integrating Machine Learning for Accurate Prediction of Early Diabetes;International Journal of Cyber Behavior, Psychology and Learning;2023-11-01

4. Machine Learning for Accurate Software Development Cost Estimation in Economically and Technically Limited Environments;International Journal of Software Science and Computational Intelligence;2023-10-10

5. The Design of English Mobile Learning Software Based on Android Application;2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3