Review on Modeling of Vapor Compression Chillers: District Cooling Perspective

Author:

Kadam Sambhaji T.1,Hassan Ibrahim1,Rahman Mohammad Azizur2,Papadopoulos Athanasios I.3,Seferlis Panos4

Affiliation:

1. Mechanical Engineering Department, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

2. Petroleum Engineering Department, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

3. Chemical Process and Energy, Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki, Greece

4. Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Energy consumption and its associated consequences can be reduced by implementing district cooling strategies that supply low temperature water to a wide range of end users through chillers and distribution networks. Adequate understanding, performance prediction and further optimization of vapor compression chillers used widely in district cooling plants have been a subject of intense research through model-based approaches. In this context, we perform an extensive review of different modeling techniques used for predicting steady-state or dynamic performance of vapor compression liquid chillers. The explored modeling techniques include physical and empirical models. Different physical models used for vapor compression chillers, based on physics laws, are discussed in detail. Furthermore, empirical models (based on artificial neural networks, regression analysis) are elaborated along with their advantages and drawbacks. The physical models can depict both steady- and unsteady-state performance of the vapor compression chiller; however, their accuracy and physical realism can be enhanced by considering the geometrical arrangement of the condenser and evaporator and validating them for various ecofriendly refrigerants and large system size (i.e., cooling capacity). Apparently, empirical models are easy to develop but do not provide the necessary physical realism of the process of vapor compression chiller. It is further observed that DC plants/networks have been modeled from the point of view of optimization or integration but no efforts have been made to model the chillers with multiple VCR cycles. The development of such models will facilitate to optimize the DC plant and provide improved control strategies for effective and efficient operation.

Funder

NPRP

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3