Affiliation:
1. College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
2. College of Information Sciences and Technology, Donghua University, Shanghai 201620, P. R. China
Abstract
This paper proposes an effective method to elevate the performance of saliency detection via iterative bootstrap learning, which consists of two tasks including saliency optimization and saliency integration. Specifically, first, multiscale segmentation and feature extraction are performed on the input image successively. Second, prior saliency maps are generated using existing saliency models, which are used to generate the initial saliency map. Third, prior maps are fed into the saliency regressor together, where training samples are collected from the prior maps at multiple scales and the random forest regressor is learned from such training data. An integration of the initial saliency map and the output of saliency regressor is deployed to generate the coarse saliency map. Finally, in order to improve the quality of saliency map further, both initial and coarse saliency maps are fed into the saliency regressor together, and then the output of the saliency regressor, the initial saliency map as well as the coarse saliency map are integrated into the final saliency map. Experimental results on three public data sets demonstrate that the proposed method consistently achieves the best performance and significant improvement can be obtained when applying our method to existing saliency models.
Funder
the National Natural Science Foundation of China
the Innovation Program of Shanghai Municipal Education Commission
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献