Affiliation:
1. Departmento de Informática e Ingeniería de Sistemas, Facultad de Ciencias, Universidad de Zaragoza, E-50009 — Zaragoza, Spain
2. Departmento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apto. 1160, E-41080 — Sevilla, Spain
Abstract
This paper is devoted to state and prove a Digital Index Theorem for digital (n - 1)-manifolds in a digital space (Rn, f), where f belongs to a large family of lighting functions on the standard cubical decomposition Rn of the n-dimensional Euclidean space. As an immediate consequence we obtain the corresponding theorems for all (α, β)-surfaces of Kong–Roscoe, with α, β ∈ {6, 18, 26} and (α, β) ≠ (6, 6), (18, 26), (26, 26), as well as for the strong 26-surfaces of Bertrand–Malgouyres.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Digital homotopy with obstacles;Discrete Applied Mathematics;2004-04
2. Homotopy in digital spaces;Discrete Applied Mathematics;2003-01