Laplacian Embedded Infinite Kernel Model for Semi-Supervised Classification

Author:

Yang Tao1,Fu Dongmei1,Wu Chunhong1

Affiliation:

1. School of Automation and Electrical Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China

Abstract

Promoted by its convexity and low time complexity, Laplacian embedded support vector regression (LapESVR) model based on manifold regularization (MR) has assumed an important role in semi-supervised classification. Conventionally, the LapESVR model is based on a single kernel function that is intrinsically capable of describing one feature mapping relation only. However, when the data to be processed is from a complex dataset where multiple features of the data are required to be treated, the classification performance using the LapESVR based on a single kernel substantially degrade, indicating that the classification requirement in this case is beyond the capability of the LapESVR. In addition, the processing data is often subject to the impact of abnormal data samples; therefore, in practice assigning a fixed value that is related to the average distance of the processing data as the parameter value of kernel function of the LapESVR is by no means optimal. To solve the problems as mentioned regarding the LapESVR, this paper proposes a Laplacian embedded infinite kernel regression (LapEIKR) model. The proposed model combines the multiple kernels linearly to improve its ability of characterization of the processing data, typical in semi-supervised classification of complex datasets, with multiple features. Further, the parameter setting of the multiple kernels of the LapEIKR model is turned into an optimization problem by formulating a corresponding minimum objective function and an iterative algorithm, and then the values of the settings are facilitated to be obtained by a formulated calculation, assuming the optimal values with respect to the designed objective function. Comparative experiments on the UCI datasets, benchmark datasets and Caltech256 datasets show that the proposed LapEIKR model is improving in terms of adaptivity and efficiency.

Funder

National Natural Science Foundation of China (CN)

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference23 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3