ORTHOGONAL MAXIMUM MARGIN DISCRIMINANT PROJECTION WITH APPLICATION TO LEAF IMAGE CLASSIFICATION

Author:

ZHANG SHAN-WEN1,WANG XIANFENG1,ZHANG CHUANLEI2

Affiliation:

1. Department of Engineering and Technology, Xijing University, Xi'an 710123, China

2. School of Computer Science and Information Engineering, Tianjin University of Science and Technology, Tianjin 300222, China

Abstract

A novel supervised dimensionality reduction method called orthogonal maximum margin discriminant projection (OMMDP) is proposed to cope with the high dimensionality, complex, various, irregular-shape plant leaf image data. OMMDP aims at learning a linear transformation. After projecting the original data into a low dimensional subspace by OMMDP, the data points of the same class get as near as possible while the data points of the different classes become as far as possible, thus the classification ability is enhanced. The main differences from linear discriminant analysis (LDA), discriminant locality preserving projections (DLPP) and other supervised manifold learning-based methods are as follows: (1) In OMMDP, Warshall algorithm is first applied to constructing both of the must-link and class-class scatter matrices, whose process is easily and quickly implemented without judging whether any pairwise points belong to the same class. (2) The neighborhood density is defined to construct the objective function of OMMDP, which makes OMMDP be robust to noise and outliers. Experimental results on two public plant leaf databases clearly demonstrate the effectiveness of the proposed method for classifying leaf images.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3