Twin Bounded Support Tensor Machine for Classification

Author:

Shi Haifa1,Zhao Xinbin1,Zhen Ling1,Jing Ling1

Affiliation:

1. College of Science, China Agricultural University, Qinghuadonglu No. 17 Beijing 100083, P. R. China

Abstract

The traditional vector-based classifiers, such as support vector machine (SVM) and twin support vector machine (TSVM), cannot handle tensor data directly and may not utilize the data informations effectively. In this paper, we propose a novel classifier based on tensor data, called twin bounded support tensor machine (TBSTM) which is an extension of twin bounded support vector machine (TBSVM). Similar to TBSVM, TBSTM gets two hyperplanes and obtains the solution by solving two quadratic programming problems (QPPs). The computational complexity of each QPPs is smaller than that of support tensor machine (STM). TBSTM not only retains the advantage of TBSVM, but also has its unique superior characteristics: (1) it makes full use of the structure information of data; (2) it has acceptable or better classification accuracy compared to STM, TBSVM and SVM; (3) the computational cost is basically less than STM; (4) it can deal with large data that TBSVM is not easy to achieve, especially for small-sample-size (S3) problems; (5) it adopts alternating successive over relaxation iteration (ASOR) method to solve optimization problems which accelerates the pace of training. Finally, we demonstrate the effectiveness and superiority by the experiments based on vector and tensor data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3