Interpretable Long-Term Forecasting Based on Dynamic Attention in Smart City

Author:

Ma Changxia1ORCID,Xie Jun1ORCID,Yang Lisha1ORCID,Zhong Zhaoman1ORCID,Zhao Xuefeng1ORCID,Hu Wenbin1ORCID

Affiliation:

1. School of Computer Engineering, Jiangsu Ocean University, Jiangsu, Lianyungang 222000, P. R. China

Abstract

Accurate prediction is of great significance to the construction of a smart city. However, current models only focus on mining the relationship among sequences and ignore the influence of the predicted sequences on future predictions, so we propose a Dynamic Attention Neural Network (DANN) based on encoder-decoder, which combines encoder context vectors and newly generated decoder context vectors to jointly dynamically representation learning, then generates corresponding predicted values. DANN processes data via the Bi-directional Long Short-Term Memory (Bi-LSTM) network as the fundamental structure of the network between encoder and decoder. What’s more, in order to produce a new feature representation with low redundancy, gate mechanism network module is used to adaptively learn the interdependence of multivariate feature data. The relevant experiments show that compared with baseline models, DANN has the most stable long-term prediction performance, which reduces the problem of error accumulation to a certain degree.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3