AN EFFICIENT METHOD FOR ONLINE CURSIVE HANDWRITING STROKES REORDERING

Author:

DE STEFANO CLAUDIO1,MARCELLI ANGELO2

Affiliation:

1. DAEIMI – Università di Cassino, Via Di Biasio 43, 03043 CASSINO (FR), Italy

2. DIIIE - Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy

Abstract

In the framework of online cursive handwriting recognition, we present an efficient method for reordering the sequence of strokes composing handwriting in two special cases of interest: the horizontal bar of the character "" and the dot of the character "". The proposed method exploits shape information for selecting the strokes that most likely correspond to the features of interest, and layout and topological information for locating the strokes representing the body of the characters to which the features belong to. The method does not depend on the specific algorithm used for detecting the elementary strokes in which the electronic ink may be decomposed into. The performance of our method, evaluated on a data set of cursive words produced by 50 different writers, has shown a correct reordering of the sequence in more than 85% of the cases. Thus, the proposed method allows obtaining a more stable and invariant description of the electronic ink in terms of elementary stroke sequences, and therefore can be helpfully used as a preprocessing step for both segmentation-based and word-based handwriting recognition systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference9 articles.

1. B. Bontempi and A. Marcelli, Handwriting and Drawing Research: Basic and Applied Issues, eds. M. L. Simner, C. G. Leedham and A. J. W. M. Thomassen (IOS Press, Amsterdam, 1996) pp. 315–327.

2. Off-line cursive script word recognition

3. C. A. Higgins and D. M. Ford, From Pixels to Features III: Frontiers in Handwriting Recognition, eds. S. Impedovo and J. C. Simon (Elsevier, Amsterdam, 1992) pp. 75–86.

4. Online and off-line handwriting recognition: a comprehensive survey

5. L. R. B. Schomaker and H. L. Teulings, From Pixels to Features III: Frontiers in Handwriting Recognition, eds. S. Impedovo and J. C. Simon (Elsevier, Amsterdam, 1992) pp. 315–325.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3