Improved Locality Preserving Projection for Hyperspectral Image Classification in Probabilistic Framework

Author:

Majdar Reza Seifi1ORCID,Ghassemian Hassan2

Affiliation:

1. Department of Electrical Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2. Image Processing and Information Analysis Lab, Faculty of Computer and Electrical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Unlabeled samples and transformation matrix are two main parts of unsupervised and semi-supervised feature extraction (FE) algorithms. In this manuscript, a semi-supervised FE method, locality preserving projection in the probabilistic framework (LPPPF), to find a sufficient number of reliable and unmixed unlabeled samples from all classes and constructing an optimal projection matrix is proposed. The LPPPF has two main steps. In the first step, a number of reliable unlabeled samples are selected based on the training samples, spectral features, and spatial information in the probabilistic framework. In this way, the spectral and spatial probability distribution function is calculated for each unlabeled sample. Therefore, the spectral features and spatial information are integrated together with a joint probability distribution function. Finally, a sufficient number of unlabeled samples with the highest joint probability distribution are selected. In the second step, the selected unlabeled samples are applied to construct the transformation matrix based on the spectral and spatial information of the unlabeled samples. The adjacency graph is improved by using new weights based on spectral and spatial information. This method is evaluated on three data sets: Indian Pines, Pavia University, and Kennedy Space Center (KSC) and compared with some recent and well-known supervised, semi-supervised, and unsupervised FE methods. Various experiments demonstrate the efficiency of the LPPPF in comparison with the other FE methods. LPPPF has also considerable performance with limited training samples.

Funder

Ardabil Branch, Islamic Azad University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3